Combined compression and denoising of images using vector quantization

نویسندگان

  • Kannan Panchapakesan
  • Ali Bilgin
  • David G. Sheppard
  • Michael W. Marcellin
  • Bobby R. Hunt
چکیده

Compression of a noisy source is usually a two stage problem, involving the operations of estimation (denoising) and quantization. A survey of literature on this problem reveals that for the squared error distortion measure, the best possible compression strategy is to subject the noisy source to an optimal estimator followed by an optimal quantizer for the estimate. What we present in this paper is a simple but sub-optimal vector quantization (VQ) strategy that combines estimation and compression in one efficient step. The idea is to train a VQ on pairs of noisy and clean images. When presented with a noisy image, our VQ-based system estimates the noise variance and then performs joint denoising and compression. Simulations performed on images corrupted by additive, white, Gaussian noise ( AWGN) show significant denoising at various bit rates. Results also indicate that our system is robust enough to handle a wide range of noise variances, while designed for a particular noise variance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Compression and Denoising of Imagery Using Non-linear Interpolative Vector Quantization

Quantization of a noisy source is a classic problem. Although, optimal solutions have been shown to exist under certain assumptions, they are usually either extremely difficult to implement or computationally very intensive. The vector quantization (VQ) based strategy we present in this paper is simple, efficient, and capable of joint compression and denoising of images corrupted by additive wh...

متن کامل

Image coding using vector quantization: a review - Communications, IEEE Transactions on

This paper presents a review of vector quantization techniques used for encoding digital images. First the concept of vector quantization is introduced, then its application to digital images is explained. Spatial, predictive, transform, hybrid, binary, and subband vector quantizers are reviewed. The emphasis here is on the usefulness of the vector quantization when it is combined with conventi...

متن کامل

کاهش رنگ تصاویر با شبکه‌های عصبی خودسامانده چندمرحله‌ای و ویژگی‌های افزونه

Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...

متن کامل

An Algorithmic Approach for Efficient Image Compression using Neuro-Wavelet Model and Fuzzy Vector Quantization Technique

Applications, which need to store large database and/or transmit digital images requiring high bit-rates over channels with limited bandwidth, have demanded improved image compression techniques. This paper describes practical and effective image compression system based on neuro-fuzzy model which combines the advantages of fuzzy vector quantization with neural network and wavelet transform. Th...

متن کامل

An Optimized Vector Quantization for Color Image Compression

Image Data compression using vector quantization (VQ) has received a lot of attention in the recent years because of its optimality in rate distortion and adaptability. A fundamental goal of data compression is to reduce the bit rate for transmission or data storage while maintaining an acceptable fidelity or image quality. The combination of subband coding and vector quantization can provide a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003